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Introduction
Improving positive airway pressure (PAP)
adherence is crucial to obstructive sleep apnea
(OSA) treatment success. Behavioral and technical
interventions such as patient outreach, coaching,
troubleshooting, and resupply may be deployed
to positively impact adherence. In order to fully
leverage these methods of interventions, it is
critical to detect early signs and risks of non-
compliance to trigger early outreach. We have
previously shown the potential of utilizing Deep
Convolutional Neural Network (DCNN) models to
accurately forecast future PAP usage, based on
predefined compliance phenotypes, to enable
early patient outreach and interventions. These
phenotypes were limited, based solely on usage
patterns. We propose an unsupervised learning
methodology for redefining these adherence
phenotypes in order to assist with the creation of
more precise and personalized patient
categorization.

The Phenotypes
We’ve previously defined four different phenotypes based on the 10 different rating
combinations as followed:

In this study we strived to challenge these four group definitions and attempt to
redefine them based on an unsupervised clustering algorithm.

Results

The Ratings and Phenotypes in 2D
We sampled 10,000 samples each containing 30 days of usage data. We
then ran all samples through a PCA algorithm which allowed us to visualize
them in a 2D plane.

We then ran all 10,000 samples through an HDBSCAN algorithm. One of the
main advantages of HDBSCAN is that it can determine the number of
clusters in the data without needing to predefine the number of clusters
beforehand (as appose to other clustering algorithms like K-Means which
requires the user to specify the number of clusters as a parameter of the
algorithm). This allowed us to redefine the phenotypes such that they match
the output of the HDBSCAN algorithm.

The Effect of Patient Metadata on Phenotype Forecasting

We trained our model utilizing the usage data together with the age, sex, and AHI of 
each patient to forecast the phenotype for the next 30 days of PAP usage. We’ve 
observed an increase in performance compared to our previously published results.

The Effect of the New Phenotypes on Phenotype Forecasting

We then analyzed the same model once more using the new phenotype definitions and 
received a further increase in the sensitivity of the model.

Conclusion
• In this research, we have shown that by utilizing historical PAP usage patterns along

with additional patient information we can identify PAP specific adherence
phenotypes and improve overall patient phenotype forecasting.

• This allows focus of PAP adherence program resources to be targeted early on
patients susceptible to treatment non-adherence.

• The transition between the phenotypes (variable users) can also indicate when
personalized intervention is necessary to maximize treatment success and outcomes.

• Lastly, providers can transition patients in the highly non-compliant group more
quickly to alternative therapies.

The Dataset
• The dataset contained 10,273 patients.
• 455 days of PAP usage were recorded for each

patient.
• Furthermore, the dataset contained the age,

sex, and apnea-hypopnea index (AHI) for each
patient.

The Rating System
• Split 30 days of usage data into 10-day

groupings.
• The mode of each group was labeled with one

of the following ratings:
• A: >4 hours of usage.
• B: <4 hours of usage.
• C: 0 hours of usage.

• Overall, 30 days of usage can now be
represented by a three-letter group.

• This rating system produces overall 10
different group combinations.

Phenotype Score Rating Combination

Good User 3 AAA, AAB

Variable User 2 AAC, ABB, ABC, BBB

Occasional User 1 ACC, BBC, BCC

Non-User 0 CCC

Table 1. The four phenotypes. Definitions of the four phenotypes based on the rating combinations.

Methodology
The AI Model

Principal Component Analysis (PCA)
PCA is a dimensionality reduction method that is usually used in exploratory data
analysis. The PCA algorithm transforms the features of data samples into their
orthonormal, linearly uncorrelated components thus, allowing the data to be
projected onto their first n principal components. This enables high dimensionality
data to be visualized in a more intuitive feature space (such as 2D or 3D space).

Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN)
HDBSCAN is an unsupervised clustering algorithm which can take a large amount of
data samples with m number of features and find meaningful structures in the data
thus, clustering them into j unique clusters. These clusters can then be associated
with known characteristics of the analyzed data and allows for the samples to be
gathered into meaningful groups based on their unique features.

Figure 1. The Training Process. The DCNN model was trained to predict the next 30 days of PAP usage
based on the previous 30 days of PAP usage. During each iteration, the model generates a prediction
for the next 30 days based on the previous and optimizes an error function such that the predicted next
30 days of PAP usage will match the actual recorded next 30 days of PAP usage as much as possible.
The prediction can then be converted to one of the defined phenotypes. In addition, the age, sex, and
AHI of each patient can be used as well in order to improve overall performance and allow for a more
personalized outreach triggering.

Non-User Occasional User Variable User Good User

Non-User 117,361 5,228 733 0

Occasional User 3,809 39,553 9,669 503

Variable User 125 7,370 87,831 15,668

Good User 0 1 15,996 503,158

Sensitivity: 93%, Specificity: 96%, Accuracy: 96% 

Non-User Variable User Good User

Non-User 134,420 8,655 0

Variable User 2,464 126,120 16,171

Good User 0 15,997 503,158

Sensitivity: 95%, Specificity: 96% , Accuracy: 96% 

Figure 2. Visualization of the ratings and phenotypes. (a) A scatter plot of all samples color
coded with the rating of each sample. (b) A scatter plot of all samples color coded with the
phenotype of each sample.
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Figure 3. Visualization of the clusters and new phenotypes. (a) A scatter plot of all samples
color coded with the 3 different cluster labels. (b) A scatter plot of all samples color
coded with the new phenotype of each sample.
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Phenotype Score Rating Combination

Good User 2 AAA, AAB

Variable User 1 AAC, ABB, ABC, BBB, ACC

Non-User 0 BBC, BCC, CCC

Table 2. The new three phenotypes. Definitions of the new
phenotypes based on the clustering algorithm.

Table 3. Phenotype forecasting. Confusion matrix for the forecasting of the four phenotypes utilizing
both the PAP usage data and the additional patient information.

Table 4. New phenotype forecasting. Confusion matrix for the forecasting of the three new
phenotypes utilizing both the PAP usage data and the additional patient information.

Redefining the Phenotypes

The clustering algorithm revealed 
that only three main phenotypes 
exist (good users, variable users, 
and non-users) which are defined 
in table 2.


